Abstract
We study intersections of the form g1C1∩g2C2, where Ci are conjugacy classes of arbitrary finite simple groups and gi are group elements. We show that, generically, |g1C1∩g2C2|∼|C1||C2|/|G|, which means that the events g1C1,g2C2 are almost independent in G. We also discuss the dimension and the irreducibility of such intersections in simple algebraic groups, and expose the anomaly of SL2. This work is motivated by recent questions of Hrushovski.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.