Abstract
For a dynamical system, it is known that the existence of a Lyapunov density implies almost global stability of an equilibrium. It is then natural to ask whether the existence of multiple Lyapunov densities for a nonlinear switched system implies almost global stability, in the same way as the existence of multiple Lyapunov functions implies global stability for nonlinear switched systems. In this paper, the answer to this question is shown to be affirmative as long as switchings satisfy a dwell time constraint with an arbitrarily small dwell time. Specifically, as the main result, we show that a nonlinear switched system with a minimum dwell time is almost globally stable if there exist multiple Lyapunov densities that satisfy some compatibility conditions depending on the value of the minimum dwell time. This result can also be used to obtain a minimum dwell time estimate to ensure almost global stability of a nonlinear switched systems. In particular, the existence of a common Lyapunov density implies almost global stability for any arbitrary small minimum dwell time. The results obtained for continuous-time switched systems are based on some sufficient conditions for the almost global stability of discrete-time nonautonomous systems. These conditions are obtained using the duality between Frobenius-Perron operator and Koopman operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.