Abstract
We introduce and study the class of almost Dunford–Pettis sets in Banach lattices. It also discusses some of the consequences derived from this study. As an application, we characterize Banach lattices whose relatively weakly compact sets are almost Dunford–Pettis sets. Also, we establish some necessary and sufficient conditions on which an almost Dunford–Pettis set is L-weakly compact (respectively, relatively weakly compact). In particular, we characterize Banach lattices under which almost Dunford–Pettis sets in the topological dual of a Banach lattice coincide with that of L-weakly compact (respectively, relatively weakly compact) sets. As a consequences we derive some results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.