Abstract
We study Smoluchowski–Poisson equation in two space dimensions provided with Dirichlet boundary condition for the Poisson part. For this equation, several profiles of blowup solution have been noticed: blowup threshold on L1 norm of the initial value, finiteness of blowup points, formation of delta singularities called collapses, occurrence of type II blowup, exclusion of the boundary blowup point, and so forth. Here, we show the collapse mass quantization with possible residual terms. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.