Abstract

Studying the flow of baryons into and out of galaxies is an important part of understanding the evolution of galaxies over time. We present a detailed case study of the environment around an intervening Ly $\alpha$ absorption line system at $z_{\rm abs} = 0.633$, seen towards the quasar J0423$-$0130 ($z_{\rm QSO} = 0.915$). We detect with ALMA the $^{12}$CO(2--1), $^{12}$CO(3--2) and $1.2$~mm continuum emission from a galaxy at the redshift of the Ly $\alpha$ absorber at a projected distance of $135$ kpc. From the ALMA detections, we infer ISM conditions similar to those in low redshift Luminous Infrared Galaxies. DDT MUSE integral field unit observations reveal the optical counterpart of the $^{12}$CO emission line source and three additional emission line galaxies at the absorber redshift, which together form a galaxy group. The $^{12}$CO emission line detections originate from the most massive galaxy in this group. While we cannot exclude that we miss a fainter host, we reach a dust-uncorrected star-formation rate (SFR) limit of > $0.3 \text{M}_{\odot} \text{ yr}^{-1}$ within $100$ kpc from the sightline to the background quasar. We measure the dust-corrected SFR (ranging from $3$ to $50$ M$_{\odot}$ yr$^{-1}$), the morpho-kinematics and the metallicities of the four group galaxies to understand the relation between the group and the neutral gas probed in absorption. We find that the Ly $\alpha$ absorber traces either an outflow from the most massive galaxy or intra-group gas. This case study illustrates the power of combining ALMA and MUSE to obtain a census of the cool baryons in a bounded structure at intermediate redshift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.