Abstract

ABSTRACT We present ALMA measurements of a merger shock using the thermal Sunyaev–Zel’dovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at . Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number , which in turn suggests a high value of the magnetic field (of the order of 4–10 ) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest-redshift direct detection of a cluster shock to date, and one of the first instances of an ALMA-SZ observation in a galaxy cluster. It shows the tremendous potential for future ALMA-SZ observations to detect merger shocks and other cluster substructures out to the highest redshifts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.