Abstract
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) and Karl G. Jansky Very Large Array (JVLA) observations of the massive infrared dark cloud NGC 6334S (also known as IRDC G350.56+0.44), located at the southwestern end of the NGC 6334 molecular cloud complex. The H13CO+ and NH2D lines covered by the ALMA observations at a ∼3″ angular resolution (∼0.02 pc) reveal that the spatially unresolved nonthermal motions are predominantly subsonic and transonic, a condition analogous to that found in low-mass star-forming molecular clouds. The observed supersonic nonthermal velocity dispersions in massive star-forming regions, often reported in the literature, might be significantly biased by poor spatial resolutions that broaden the observed line widths owing to unresolved motions within the telescope beam. Our 3 mm continuum image resolves 49 dense cores, whose masses range from 0.17 to 14 M ⊙. The majority of them are resolved with multiple velocity components. Our analyses of these gas velocity components find an anticorrelation between the gas mass and the virial parameter. This implies that the more massive structures tend to be more gravitationally unstable. Finally, we find that the external pressure in the NGC 6334S cloud is important in confining these dense structures and may play a role in the formation of dense cores and, subsequently, the embedded young stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.