Abstract

Abstract We report the identification of four millimeter line-emitting galaxies with the Atacama Large Milli/submillimeter Array (ALMA) in SSA22 Field (ADF22). We analyze the ALMA 1.1-mm survey data, with an effective survey area of 5 arcmin2, frequency ranges of 253.1–256.8 and 269.1–272.8 GHz, angular resolution of 0${^{\prime\prime}_{.}}$7 and rms noise of 0.8 mJy beam−1 at 36 km s−1 velocity resolution. We detect four line-emitter candidates with significance levels above 6σ. We identify one of the four sources as a CO(9–8) emitter at z = 3.1 in a member of the proto-cluster known in this field. Another line emitter with an optical counterpart is likely a CO(4–3) emitter at z = 0.7. The other two sources without any millimeter continuum or optical/near-infrared counterpart are likely to be [C ii] emitter candidates at z = 6.0 and 6.5. The equivalent widths of the [C ii] candidates are consistent with those of confirmed high-redshift [C ii] emitters and candidates, and are a factor of 10 times larger than that of the CO(9–8) emitter detected in this search. The [C ii] luminosity of the candidates are 4–7 × 108 L⊙. The star formation rates (SFRs) of these sources are estimated to be 10–20 M⊙ yr−1 if we adopt an empirical [C ii] luminosity–SFR relation. One of them has a relatively low S/N ratio, but shows features characteristic of emission lines. Assuming that at least one of the two candidates is a [C ii] emitter, we derive a lower limit of [C ii]-based star formation rate density (SFRD) at z ∼ 6. The resulting value of >10−2 M⊙ yr−1 Mpc−3 is consistent with the dust-uncorrected UV-based SFRD. Future millimeter/submillimeter surveys can be used to detect a number of high-redshift line emitters, with which to study the star formation history in the early universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call