Abstract

Although C–H oxidation of hydrocarbons is generally difficult, allylic C–H oxidation is relatively simple and predictable, even on a preparative scale, because active species generated at the allylic position are stabilized by the double bond. Therefore, allylic oxidation has been employed in natural product synthesis, and a variety of reagents and conditions for allylic oxidation have been reported. However, reagents and conditions suitable for natural product synthesis are limited in terms of efficiency and chemo-, regio-, and stereoselectivity, owing to the structural and characteristic diversity of natural products. This review addresses allylic oxidations, highlighting reagents and conditions that meet the requirements for natural product synthesis. 1 Introduction 2 Selenium Reagents 2.1 Selenium Dioxide 2.2 Diphenyldiselenide–Iodoxybenzene 3 Chromium(VI) Reagents 3.1 Chromic Acid and Chromate Ester 3.2 Chromium Trioxide–3,5-Dimethylpyrazole (CrO<sub>3</sub>·3,5-DMP) 3.3 PCC and PDC 4 Transition-Metal Reagents 5 Others 6 Conclusion

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.