Abstract

Ring‐opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers’ ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight‐membered (3,4‐COO) and five‐membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five‐membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4‐COO) showed both high stereo‐ and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post‐polymerization ring‐opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.