Abstract

Allylic C-H bond oxidative addition reactions, mediated by tris(oxazolinyl)borato rhodium(I) and iridium(I) species, provide the first step in a hydrocarbon functionalization sequence. The bond activation products To(M)MH(η(3)-C(8)H(13)) (M = Rh (1), Ir (2)), To(M)MH(η(3)-C(3)H(5)) (M = Rh (3), Ir (4)), and To(M)RhH(η(3)-C(3)H(4)Ph) (5) (To(M) = tris(4,4-dimethyl-2-oxazolinyl)phenylborate) are synthesized by reaction of Tl[To(M)] and the corresponding metal olefin chloride dimers. Characterization of these group 9 allyl hydride complexes includes (1)H-(15)N heteronuclear correlation NMR experiments that reveal through-metal magnetization transfer between metal hydride and the trans-coordinated oxazoline nitrogen. Furthermore, the oxazoline (15)N NMR chemical shifts are affected by the trans ligand, with the resonances for the group trans to hydride typically downfield of those trans to η(3)-allyl and tosylamide. These group 9 oxazolinylborate compounds have been studied to develop approaches for allylic functionalization. However, this possibility is generally limited by the tendency of the allyl hydride compounds to undergo olefin reductive elimination. Reductive elimination products are formed upon addition of ligands such as CO and CN(t)Bu. Also, To(M)RhH(η(3)-C(8)H(13)) and acetic acid react to give To(M)RhH(κ(2)-O(2)CMe) (8) and cyclooctene. In contrast, treatment of To(M)RhH(η(3)-C(3)H(5)) with TsN(3) (Ts = SO(2)C(6)H(4)Me) gives the complex To(M)Rh(η(3)-C(3)H(5))NHTs (10). Interestingly, the reaction of To(M)RhH(η(3)-C(8)H(13)) and TsN(3) yields To(M)Rh(NHTs)(H)OH(2) (11) and 1,3-cyclooctadiene viaβ-hydride elimination and Rh-H bond amination. Ligand-induced reductive elimination of To(M)Rh(η(3)-C(3)H(5))NHTs provides HN(CH(2)CH=CH(2))Ts; these steps combine to give a propene C-H activation/functionalization sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.