Abstract
Allylferrocenylselenide ( 2) is prepared from diferrocenyldiselenide ( 1Se) which was characterized along with its sulfur analog 1S by X-ray structure analysis. In the crystal lattice the packing is determined by ‘point-to-face’ CH⋯π interactions with close contacts between the CH π donors and cyclopentadienyl rings as the π acceptors. Compound 2 is then used in the trapping of the primary butatrienylidene intermediate trans-[ClRu(dppm) 2CCCCH 2] +. The isolated product, trans-[Cl(dppm) 2RuCCC(SeFc)(C 4H 7)] + ( 3) (Fc=ferrocenyl), represents the first seleno-substituted allenylidene complex to be reported to date. Compound 3 is formed in a sequence involving regioselective addition of the selenium nucleophile to C γ followed by hetero-Cope-rearrangement of the allyl vinyl substituted SeR 3 + cation. Its spectroscopic properties place 3 at an intermediate position between sulfur and arene substituted all-carbon allenylidene complexes of the same metal fragment. The selenoallenylidene complex 3 contains a redox active ferrocenyl substituent attached to the heteroatom giving rise to reversible electrochemistry. ESR spectroscopy proves that electron transfer occurs from this site and its effect on the spectroscopic properties of 3 is probed by combining electrochemistry and IR or UV–vis/NIR spectroscopy by in situ techniques. In contrast, the reversible reduction primarily involves the allenylidene ligand as ascertained by ESR spectroscopy. In situ spectro-electrochemical techniques reveal how the reduction affects the bonding within the unsaturated ligand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.