Abstract

Allylamine (AA, 3-aminopropene) is a specific cardiovascular toxin used experimentally to model myocardial necrosis and atherosclerosis. In these physiologic experiments, 10-day AA exposure (100 mg · kg−1· day−1by gavage) produced severe myocardial necrosis and increased heart rate but did not affect systolic blood pressure in rats. Mid-thoracic aortic ring segments were removed, and reactivity to contractile and relaxant agonists was tested. Aortic rings (∼3 mm) from AA-treated rats were contracted significantly more by high potassium (100 mM) and slightly more by norepinephrine (NE, 10 μM) than anatomically matched control aortic rings. No difference in aortic ring NE sensitivity or percentage relaxation in response to acetylcholine (1 μM) or sodium nitroprusside (100 μM) was detected between control and AA-treated rat aortic rings. Allylamine (1 μM–1 mM) induced modest, concentration-dependent contractions and tension oscillations in aortic rings from both control and AA-treated rats. Aortic rings from AA-treated rats, however, were more sensitive to AA. Vascular smooth muscle cells derived from control and AA-treated rat aortas had similar toxic sensitivity to AAin vitrousing the MTT viability assay. The mechanisms by which AA exposure increased heart ratein vivoand contractility of aortic rings are unknown. These experiments support the previously proposed concept that AA-induced acute myocardial necrosis is due to coronary vasospasm and myocardial ischemia and cell injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.