Abstract

Ally lisothiocyanate (AITC), a constituent of naturally occurring isothiocyanates (ITCs) found in some Brassica vegetables, has been previously demonstrated to have anti-carcinogenic activity. However, there is no available information showing that AITC induces DNA damage and alters DNA damage repair proteins in human breast cancer MCF-7 cells. In the present study, we investigated the effects of AITC on DNA damage and repair responses in human breast cancer MCF-7 cells in vitro. Cell viability was measured by flow cytometric assay. DNA condensation (apoptotic cell death) and DNA fragmentation (laddered DNA) were assayed by DAPI staining and DNA gel electrophoresis assays, respectively. Furthermore, DNA damage (comet tail) was measured by the comet assay. Western blotting was used to measure the expression of DNA damage- and repair-associated proteins. AITC decreased cell viability in a dose-dependent and induced apoptotic cell death (DNA condensation and fragmentation) and DNA damage in MCF-7 cells. AITC increased p-ATMSer1981, p-ATRSer428, p53, p-p53Ser15, p-H2A.XSer139, BRCA1, and PARP at 10-30 μM at 24 and 48 h treatments. However, AITC decreased DNA-PK at 24 and 48 h treatment, and decreased MGMT at 48 h in MCF-7 cells. AITC induced cytotoxic effects (decreased viable cell number) through induction of DNA damage and condensation and altered DNA damage and repair associated proteins in MCF-7 cells in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.