Abstract
The occurrence and development of inflammation are closely correlated to the polarization of macrophages. All-trans retinoic acid (ATRA) has been proven to promote the polarization of macrophages from M1 to M2, but this lacks an effective carrier to participate in the biological response. The present study aims to determine whether retinoic acid-incorporated glycol chitosan (RA-GC) nanoparticles can regulate macrophage polarization in Porphyromonas gingivalis-lipopolysaccharide (Pg-LPS)-induced inflammation. Mouse 264.7 cell lines were treated with 1 µg/mL Pg-LPS to induce inflammation. After the effects of ATRA and RA-GC on the activity of macrophages were detected by CCK-8 assay, cells induced with Pg-LPS were assigned to the blank control group (GC) nanoparticles without ATRA, and experimental groups (GC nanoparticles loaded with different concentrations of ATRA: 1, 10 and 100 µg/mL). The effects of RA-GC on inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-10 and IL-12 in macrophages were detected by enzyme-linked immunosorbent assay (ELISA). Subsequently, the effects of GC nanoparticles loaded with/without ATRA on macrophage polarization in an inflammatory environment were detected by RT-PCR and Western blotting. The results revealed that RA-GC had no significant effect on macrophage activity. However, RA-GC could effectively inhibit the Pg-LPS-induced inflammatory factor expression in macrophages. Meanwhile, the experimental results confirmed that RA-GC could downregulate the expression of inducible nitric oxide synthase (iNOS) (a marker of M1 macrophages) and upregulate the expression of mannose receptor and Arginase-1 (a marker of M2 macrophages) in a dose-dependent manner. The present study confirms that RA-GC can promote the M2 polarization of macrophages in an inflammatory environment, and proposes this as a promising target for the clinical treatment of Pg-LPS-related diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.