Abstract

The relapse of cancer is mostly due to the proliferation of cancer stem cells which could not be eliminated by a standard chemotherapy. A new kind of all-trans retinoic acid stealth liposomes was developed for preventing the relapse of breast cancer and for treating the cancer in combination with a cytotoxic agent, vinorelbine stealth liposomes. In vitro studies were performed on the human breast cancer MCF-7 and MDA-MB-231 cells. In vivo evaluations were performed on the newly established relapse model with breast cancer stem cells. Results showed that the particle size of all-trans retinoic acid stealth liposomes was approximately 80 nm, and the encapsulation efficiency was > 90%. Breast cancer stem cells were identified with the CD44 +/CD24 − phenotype and characterized with properties: resistant to cytotoxic agent, stronger capability of proliferation, and stronger capability of differentiation. Inhibitory effect of all-trans retinoic acid stealth liposomes was more potent in cancer stem cells than in cancer cells. The mechanisms were defined to be two aspects: arresting breast cancer stem cells at the G 0/G 1 phase in mitosis, and inducing the differentiation of breast cancer stem cells. The cancer relapse model was successfully established by xenografting breast cancer stem cells into NOD/SCID mice, and the formation and growth of the xenografted tumors were significantly inhibited by all-trans retinoic acid stealth liposomes. The combination therapy of all-trans retinoic acid stealth liposomes with vinorelbine stealth liposomes produced the strongest inhibitory effect to the relapse tumor model. It could be concluded that all-trans retinoic acid stealth liposomes could be used for preventing the relapse of breast cancer by differentiating cancer stem cells and arresting the cell-cycle, and for treating breast cancer as a co-therapy, thus providing a novel strategy for treating breast cancer and preventing relapse derived from breast cancer stem cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.