Abstract

Adipose tissue is a potential site of retinoic acid (RA) action, but its physiological significance remains to be clarified. We have examined the effect of all-trans retinoic acid (ATRA) on growth and differentiation of preadipocytes, and on adipokine gene expression in mature adipocytes using human preadipocyte cell model, AML-I. Both ATRA and 9-cis RA induced growth arrest in AML-I preadipocyte at between 50 and 100 µM, which was accompanied by apoptosis. Western blotting showed a loss of NF-κB, Bcl-2 and p-Akt, and the accumulation of Bad and Akt in cytoplasm of ATRA-treated AML-I preadipocytes. Exposure of AML-I to ATRA or 9-cis RA increased intracellular lipid accumulation in a time-dependent manner compared to vehicle-treated cells. Expression of fatty acid synthase (FAS) and peroxisome proliferator-activated receptor-γ (PPAR-γ) proteins was increased in ATRA-treated cells. Thus, both ATRA and 9-cis RA promoted differentiation, inhibited proliferation and induced apoptosis in AML-I preadipocytes. ATRA also modulated adipokine expression by increasing the mRNA level of adipocytokines (adiponectin, leptin and LPL), and by inhibiting PAI-1 mRNA expression in mature AML-I adipocytes. The data suggest that ATRA exerts a wide range of effects--growth arrest, apoptosis, lipogenesis and modulation of adipokine gene expression--during the maturation of preadipocytes into adipocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.