Abstract

All-solution-processed reduced graphene oxide (rGO)-based flexible photodetectors (PDs) with asymmetric electrode structures of Ag nanowires (NWs) — Cu NWs are demonstrated for stable photodetection in weak-light environments. At first, we aimed to optimize the fabrication parameters of rGO layers for minimum roughness and high uniformity according to the field emission scanning electron microscope (FESEM) images; the average absorbance of optimal rGO layers is ~17.4% from 400 to 1600 nm. Additionally, compared to Ag NWs — Ag NWs and Cu NWs — Cu NWs electrodes, rGO PDs with Ag NWs—Cu NWs asymmetric electrodes showed a higher photocurrent-to-dark-current ratio (PDCR) (~6), which was due to the improved carrier transport with using Ag and Cu as cathodes and anodes. Furthermore, the highest photoresponsivity (5.5 mA/W) and detectivity ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</i> *) (~1×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">9</sup> cm Hz <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/2</sup> /W) of rGO PDs with Ag NWs — Cu NWs electrodes have been measured and evaluated at 8 V bias. This work demonstrates the significant potential of all-solution processed rGO-based flexible PDs for high-performance and low-cost photo sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call