Abstract

Using single-walled carbon nanotubes (SWCNTs) as an ion-to-electron transducer, a novel disposable all-solid-state desvenlafaxine-selective electrode based on a screen-printed carbon paste electrode was created. SWCNTs were put onto the carbon-paste electrode area, which was protected by a poly (vinyl chloride) (PVC) membrane with a desvenlafaxine-imprinted polymer serving as a recognition receptor. Electrochemical impedance spectroscopy and chronopotentiometric techniques were used to examine the electrochemical characteristics of the SWCNTs/PVC coating on the carbon screen-printed electrode. The electrode displayed a 57.2 ± 0.8 mV/decade near-Nernstian slope with a 2.0 × 10-6 M detection limit. In 10 mM phosphate buffer, pH 6, the ODV-selective electrodes displayed a quick reaction (5 s) and outstanding stability, repeatability, and reproducibility. The usefulness of electrodes was demonstrated in samples of ODV-containing pharmaceutical products and human urine. These electrodes have the potential to be mass produced and employed as disposable sensors for on-site testing, since they are quick, practical, and inexpensive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.