Abstract
All-silicon terahertz absorbers have attracted considerable interest. We present a design and numerical study of an all-silicon polarization-insensitive terahertz metamaterial absorber. The meta-atoms of the metamaterial absorber are square silicon rings which can be viewed as gratings. By properly optimizing the structure of the meta-atom, we achieve a broadband absorptivity that is above 90% ranging from 0.77 THz to 2.53 THz, with a relative bandwidth of 106.7%. Impedance matching reduces the reflection of the terahertz waves and the (0, ±1)-order diffraction induce the strong absorption. The absorption of this absorber is insensitive to the polarization of the terahertz wave and has a large incident angle tolerance of up to 60 degrees. The all-silicon metamaterial absorber proposed here provides an effective way to obtain broadband absorption in the terahertz regime. Metamaterial absorbers have outstanding applications in terahertz communication and imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.