Abstract

The lack of suitable acceptor (n-type) polymers has limited the photocurrent and efficiency of polymer/polymer bulk heterojunction (BHJ) solar cells. Here, we report an evaluation of three naphthalene diimide (NDI) copolymers as electron acceptors in BHJ solar cells which finds that all-polymer solar cells based on an NDI-selenophene copolymer (PNDIS-HD) acceptor and a thiazolothiazole copolymer (PSEHTT) donor exhibit a record 3.3% power conversion efficiency. The observed short circuit current density of 7.78 mA/cm(2) and external quantum efficiency of 47% are also the best such photovoltaic parameters seen in all-polymer solar cells so far. This efficiency is comparable to the performance of similarly evaluated [6,6]-Phenyl-C61-butyric acid methyl ester (PC60BM)/PSEHTT devices. The lamellar crystalline morphology of PNDIS-HD, leading to balanced electron and hole transport in the polymer/polymer blend solar cells accounts for its good photovoltaic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.