Abstract

Recently optoelectronic synapses generating light-driven electrical memories have played a vital role in the neuromorphic computing of visual perception. However, all the optoelectronic synapses demonstrate photoelectric conversion. Peripheral circuits are used for contact photocurrent measurement, leading to significant energy consumption and impeding the evolution of optical wireless communication. It is crucial to develop noncontact neuromorphic visual perception based on light-driven photonic memories. Herein, we report all-photonic artificial synapses based on photochromic perovskites. Triggered by ultraviolet and visible light pulses, cesium lead iodide bromine induces a structural disorder. Optical transmittance changes induced by the disorder last after the pulses are gone. Next, the photonic memories are propagated in the air and processed by a recurrent neural network. The accuracy of binary image recognition is instantly stabilized at 1.0, and accuracy above 0.8 after 7 epochs is achieved in the recognition of digitals from 0 to 9. The all-photonic synapses realize remote perception with zero in-situ energy consumption and enable artificial sensory systems with low-power computation, remote control, and ultrahigh propagation speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.