Abstract
Allozyme genetic variability in five natural populations of Cyclobalanopsis championii (Fagaceae) in Taiwan was investigated using 12 loci from 9 enzyme systems. The average values of parameters describing within-population variation, expected heterozygosity (He = 0.151), the percentage of polymorphic loci per individual (P = 50%), the average number of alleles per locus (A = 1.7), effective number of alleles per locus (Ae = 1.25), and the average number of alleles per polymorphic loci (AP = 2.2) are comparable to those of other long-lived woody plants. The overall fixation index (Fis = 0.208) indicates a significant deficiency of heterozygotes at the population level. Allelic frequency deviation from Hardy-Weinberg equilibrium was found for different loci in different populations. An exact test for population differentiation using the Tools for Population Genetic Analyses program also indicates that allelic frequencies among populations are significantly different (P < .001). Among-population variation, Gst, accounted for 9.2% of the total heterozygosity. The population at Shouchia and the southernmost population Nanjenshan had higher inbreeding coefficients (0.177 and 0.153, respectively) than did the northern populations. Genetic drift is supported by the observations of the variance components of linkage disequilibrium and a large proportion of loci in Nanjenshan and Shouchia that show pairwise locus disequilibrium. We believe continuous genetic drift in the southern populations will increase genetic divergence among populations of C. championii in Taiwan. Significant correlation was found between elevation and expected heterozygosity. We therefore inferred that temperature is the most important ecological factor to influence the genetic diversity of C. championii.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.