Abstract

Ti-based films alloyed with various Ta or Zr contents were deposited on a Si (100) substrate by magnetron sputtering. Transmission electron microscopy observations suggested that the solute Ta and Zr atoms distributed uniformly in the matrix Ti, refining the grain size. The microstructure transformed from single phase α-Ti to the coexistence of (α + β)-Ti when the Ta addition was increased to 18.2 at%. Hardness and strain rate sensitivity of the Ti-based alloyed films were evaluated by nanoindentation experiments, to show the effects of constituents and their contents. The hardness was found to change non-monotonously within the studied Ta or Zr range, which could be explained by alloying dependence of the strengthening mechanisms, including partial dislocation mechanism emanating from grain boundaries, solid solution strengthening, and solution pinning strengthening. Furthermore, a mechanistic model based on partial dislocation inhomogeneous nucleation was employed to describe the composition-dependent strain rate sensitivity of the alloyed Ti films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.