Abstract

Alloying effect on tensile ductility of nanostructured Cu-X (X = Zr and W) thin films was studied in comparison. Both Zr and W atoms segregated at grain boundaries (GBs) and increased the GB cohesion energy, leading to similar increase of ductility in as-deposited Cu-X films. After annealing treatment, however, changes in ductility showed different alloying effect: the Cu-Zr one increased while the Cu-W one decreased when compared with their as-deposited counterparts. This discrepancy was rationalized by different microstructural evolution that intergranular CuZr amorphous layer was produced in the Cu-Zr film while intergranular W grains were formed in the Cu-W one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.