Abstract

Bismuth-antimony alloy is considered as a promising potassium ion battery anode because of its combination of the high theoretical capacity of antimony and the excellent rate capacity of bismuth. However, the large volume change and sluggish reaction kinetic upon cycling have triggered severe capacity fading and poor rate performance. Herein, a nanoconfined BiSb in tremella-like carbon microspheres (BiSb@TCS) are delicately designed to address these issues. As-prepared BiSb@TCS renders an outstanding potassium-storage performance with a reversible capacity of 181mAhg-1 after ultralong 5700 cycles at a current density of 2Ag-1 , and an excellent rate capacity of 119.3mAhg-1 at 6Ag-1 . Such a superior performance can be ascribed to the delicate microstructure. The self-assembled carbon microspheres can strengthen integral structure and effectively accommodate the volume expansion of BiSb nanoparticles, and 2D carbon nanowalls in carbon microspheres can provide fast ion/electron diffusion dynamic. Theoretical calculation also suggests a thermodynamic feasibility of alloyed BiSb nanoparticles for storing potassium ion. Such a work shows that BiSb@TCS possesses a great potential to be a high-performance anode of potassium ion batteries. The rational designing of multiscaled structure would be instructive to the exploitation of other energy-storage materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.