Abstract
Alloy-type anodes are one of the most promising classes of next-generation anode materials due to their ultrahigh theoretical capacity (2-10 times that of graphite). However, current alloy-type anodes have several limitations: huge volume expansion, high tendency to fracture and disintegrate, an unstable solid-electrolyte interphase (SEI) layer, and low Coulombic efficiency. Efforts to overcome these challenges are ongoing. This Review details recent progress in the research of batteries based on alloy-type anodes and discusses the direction of their future development. We conclude that improvements in structural design, the introduction of a protective interface, and the selection of suitable electrolytes are the most effective ways to improve the performance of alloy-type anodes. Furthermore, future studies should direct more attention toward analyzing their synergistic promoting effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.