Abstract

We present evidence, from theory and experiment, that ZnSnN_{2} and MgSnN_{2} can be used to match the band gap of InGaN without alloying-by exploiting cation disorder in a controlled fashion. We base this on the determination of S, the long-range order parameter of the cation sublattice, for a series of epitaxial thin films of ZnSnN_{2} and MgSnN_{2} using three different techniques: x-ray diffraction, Raman spectroscopy, and insitu electron diffraction. We observe a linear relationship between S^{2} and the optical band gap of both ZnSnN_{2} (1.12-1.98eV) and MgSnN_{2} (1.87-3.43eV). The results clearly demonstrate the correlation between controlled heterovalent cation ordering and the optical band gap, which applies to a broad group of emerging ternary heterovalent compounds and has implications for similar trends in other material properties besides the band gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.