Abstract

In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li2O molten salt at 650°C for 24-216h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700°C under inert atmosphere. The corrosion products and fine structures of the corroded specimens were characterized by SEM, EDS, and XRD. The corrosion rate of 12wt% Cr-2wt% Si alloys and 12wt% Cr-5wt% Si alloys are below 0.3mm/year. However, the corrosion rate of 20wt% Cr-5wt% Si is 0.6mm/year. Also, the corrosion products of 12wt% Cr alloys were Cr2O3, NiCr2O4, Ni, and NiO; those of 20wt% Cr alloys were Cr2O3, LiAl2Cr3O8, and NiO. The higher corrosion rate of 20wt% Cr-5wt% Si could be the higher solute concentration which leads to an unstable alloy formation. As confirmed by the pseudo binary phase diagram of (Ni-Cr-Al-Nb)-Si, the solubility of the silicon with 20 wt% of Cr decreased to 4 wt% from 5 wt% with 12 wt% of Cr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call