Abstract

Relativistic intermediate-coupling wavefunctions are used to evaluate transition energies, line strengths and transition probabilities for all allowed and forbidden n = 2-2 transitions for krypton and molybdenum beryllium-like ions. Our results are in very good agreement with those calculated using the relativistic multi-configuration Hartree-Fock approximation. These calculations were carried out under the same physical assumption that the dominant correlation effect is the n = 2 intra-shell correlation. We also discuss the importance of relativistic effects on the radial functions, the relativistic intermediate-coupling scheme in the variational process, the importance of radiative corrections for transition energies between states with different occupation of the 2s shell, and the relative importance of intra- versus inter-shell correlation effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.