Abstract

Diploid (2n = 2x = 16), triploid (2n = 3x = 24), and tetraploid (2n = 4x = 32) interspecific hybrids between alfalfa (Medicago sativa L.) and M. papillosa Boiss. were recovered either from seed (the triploid hybrids) or from ovule–embryo culture (the diploid and tetraploid hybrids). Cytogenetic analysis of diploid interspecific hybrids (with one genome of M. sativa, designated S, and one genome of M. papillosa, designated P), indicated significant genomic affinity, with an average of 7.6 bivalents and 0.8 univalents per pollen mother cell. In contrast, cytogenetic analysis of the triploid interspecific hybrids (with one S genome and two P genomes) indicated little if any genomic affinity between M. sativa and M. papillosa. In 7 of 14 triploid hybrids analyzed no trivalent configurations were observed, and in the other hybrids, trivalent frequency ranged from 0.1 to 0.4 per pollen mother cell. Tetraploid interspecific hybrids with two S and two P genomes had predominantly bivalent pairing. Based on the lack of homology of S and P genomes, the tetraploid hybrids are basically allotetraploids (SSPP). Therefore, backcross progeny from crossing the tetraploid hybrids with tetraploid M. sativa have the genomic constitution SSSP. Univalents and trivalents were observed in first backcross (BC1) progeny, as expected, based on an allotetraploid interpretation. Most of the BC1 progeny were partially or completely male sterile, and female fertility was significantly reduced. Potential uses of homoeologous genomes such as M. papillosa in alfalfa genetic and breeding studies are discussed.Key words: cytogenetics, interspecific hybrids, ovule –embryo culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call