Abstract

Chaperonins mediate protein folding in an ATP-dependent manner. ATP binding and hydrolysis by chaperonins are subject to both homotropic and heterotropic allosteric regulation. In the case of GroEL and CCT, homotropic regulation by ATP is manifested in nested cooperativity, which involves positive intra-ring cooperativity and negative inter-ring cooperativity in ATP binding. Both types of cooperativity are modulated by various heterotropic allosteric effectors, which include nonfolded proteins, ADP, Mg2+, monovalent ions such as K+, and cochaperonins in the case of type I chaperonins such as GroEL. Here, the allosteric properties of chaperonins are reviewed and new results of ours are presented with regard to allosteric effects of ADP. The role of allostery in the reaction cycle and folding function of chaperonins is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.