Abstract

We propose a criterion for optimal parameter selection in coarse-grained models of proteins and develop a refined elastic network model (ENM) of bovine trypsinogen. The unimodal density-of-states distribution of the trypsinogen ENM disagrees with the bimodal distribution obtained from an all-atom model; however, the bimodal distribution is recovered by strengthening interactions between atoms that are backbone neighbors. We use the backbone-enhanced model to analyze allosteric mechanisms of trypsinogen and find relatively strong communication between the regulatory and active sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.