Abstract

AbstractThe caspase family of cysteine proteases are highly sought‐after drug targets owing to their essential roles in apoptosis, proliferation, and inflammation pathways. High‐throughput screening efforts to discover inhibitors have gained little traction. Fragment‐based screening has emerged as a powerful approach for the discovery of innovative drug leads. This method has become a central facet of drug discovery campaigns in the pharmaceutical industry and academia. A fragment‐based drug discovery campaign against human caspase‐7 resulted in the discovery of a novel series of allosteric inhibitors. An X‐ray crystal structure of caspase‐7 bound to a fragment hit and a thorough kinetic characterization of a zymogenic form of the enzyme were used to investigate the allosteric mechanism of inhibition. This work further advances our understanding of the mechanisms of allosteric control of this class of pharmaceutically relevant enzymes, and provides a new path forward for drug discovery efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.