Abstract

Cyclic diguanylate (c-di-GMP) is a bacterial second messenger important for physiologic adaptation and virulence. Class-I c-di-GMP riboswitches are phylogenetically widespread and thought to mediate pleiotropic genetic responses to the second messenger. Previous studies suggest that the RNA aptamer domain switches from an extended free state to a compact, c-di-GMP-bound conformation in which two helical stacks dock side-by-side. Single molecule fluorescence resonance energy transfer (smFRET) experiments now reveal that the free RNA exists in four distinct populations that differ in dynamics in the extended and docked conformations. In the presence of c-di-GMP and Mg(2+), a stably docked population (>30 min) becomes predominant. smFRET mutant analysis demonstrates that tertiary interactions distal to the c-di-GMP binding site strongly modulate the RNA population structure, even in the absence of c-di-GMP. These allosteric interactions accelerate ligand recognition by preorganizing the RNA, favoring rapid c-di-GMP binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.