Abstract

Abstract An artificial allosteric system composed of a zinc porphyrin moiety as a ligand-binding site, diphenylanthracene moieties as sterically bulky shielding units, and bipyridine terminals as Fe(II) ion-binding sites, was designed, synthesized, and characterized. The allosteric system forms an [Fe(bpy)3]-type complex in the presence of Fe(II) ions and induces a large conformational change in the alkyl side chains and shielding units, in which the anthracene groups would cover both the top and bottom of the porphyrin Zn(II) center. Consequently, the ligand-binding ability of the zinc porphyrin unit was allosterically suppressed. We found that the formation of the Fe(II) complex resulted in a 9.5-fold reduction in the binding constant between the zinc porphyrin and 3,5-bis(3,5-di-tert-butylphenyl)pyridine at 20 °C. Comparisons of entropy and enthalpy changes in the absence and presence of Fe(II) ions led to the conclusion that the allosteric suppression was mainly due to the destabilization of the Zn(II)-coordinated complex owing to the steric repulsion between the ligand and the shielding unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.