Abstract

The capacity to precisely modulate aptamer affinity is important for a wide variety of applications. However, most such engineering strategies entail laborious trial-and-error testing or require prior knowledge of an aptamer's structure and ligand-binding domain. We describe here a simple and generalizable strategy for allosteric modulation of aptamer affinity by employing a double-stranded molecular clamp that destabilizes aptamer secondary structure through mechanical tension. We demonstrate the effectiveness of the approach with a thrombin-binding aptamer and show that we can alter its affinity by as much as 65-fold. We also show that this modulation can be rendered reversible by introducing a restriction enzyme cleavage site into the molecular clamp domain and describe a design strategy for achieving even more finely-tuned affinity modulation. This strategy requires no prior knowledge of the aptamer's structure and binding mechanism and should thus be generalizable across aptamers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.