Abstract

The glucagon-like peptide-1 receptor (GLP-1R) is a well-established drug target for the treatment of type II diabetes. The development of small-molecule positive allosteric modulators (PAMs) of GLP-1R is a promising therapeutic strategy. Here, we report the discovery and characterization of PAMs with distinct chemotypes, binding to a cryptic pocket formed by the cytoplasmic half of TM3, TM5, and TM6. Molecular dynamic simulations and mutagenesis studies indicate that the PAM enlarges the orthosteric pocket to facilitate GLP-1 binding. Further signaling assays characterized their probe-dependent signaling profiles. Our findings provide mechanistic insights into fine-tuning GLP-1R via this allosteric pocket and open up new avenues to design small-molecule drugs for class B G-protein-coupled receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call