Abstract

The present in vivo electrophysiological studies in anesthetized rat were undertaken to assess the effects of the selective serotonin (5-HT) reuptake inhibitor (SSRI) escitalopram alone or in combination with the R-citalopram (the S- and R-enantiomers of citalopram), on both long-term potentiation (LTP) in the CA 1 region of dorsal hippocampus and spontaneous firing activity of dorsal raphe (DR) 5-HT neurons. At the postsynaptic level, neither escitalopram (10 mg/kg, i.p.) nor R-citalopram (20 mg/kg, i.p.) modified basal synaptic transmission but only escitalopram impaired LTP expression. Importantly, R-citalopram counteracted significantly the escitalopram-induced decrease of LTP. At the pre-synaptic level, escitalopram (25–75 μg/kg, i.v.) dose-dependently suppressed the spontaneous firing activity of DR 5-HT neurons and this suppressant effect was significantly prevented by a prior injection of R-citalopram (10 mg/kg, i.p.). These results support a role of allosteric binding sites of 5-HT transporter in the regulation of long-lasting CA 1 synaptic plasticity and DR 5-HT neuronal firing activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call