Abstract

Many cytochrome P450 enzymes (CYPs) exhibit allosteric behavior reflecting a complex ligand-binding process involving numerous factors: conformational selection, protein-protein interactions, substrate/effector/protein structure, and multiple-ligand binding. The interplay of CYP plasticity and rigidity contributes to substrate/product selectivity and to allosterism. Detailed evidence describing how protein motion modulates product selectivity is incomplete as are descriptions of effector-induced modulation of substrate dynamics. Our intent was to discover details of allosteric behavior and CYP3A4 flexibility and rigidity by investigating substrate motion using low-molecular weight ligands. Steady state kinetics and product ratios were measured for oxidation of m-xylene-(2)H3 and p-xylene; intramolecular isotope effects were measured for m-xylene-(2)H3 oxidation as a function of m-xylene-(2)H3 and p-xylene concentration. Biphasic kinetic plots indicated homotropic cooperative behavior with xylene isomers. Selectivity for aromatic hydroxylation over benzylic hydroxylation of m-xylene-(2)H3 supports a model in which the region near the CYP3A4 active oxidizing species limits substrate dynamics. p-Xylene impedes the motion of m-xylene-(2)H3 substrates that have access to the active oxidizing species: (kH/kD)obs values for m-xylene-(2)H3 decreased with p-xylene concentration. m-Xylene-(2)H3 and p-xylene do not have simultaneous access to the active oxidizing species: deuterium-labeled and unlabeled p-xylene exhibited similar effects on the (kH/kD)obs values for m-xylene-(2)H3 oxidation. p-Xylene and m-xylene-(2)H3 bind at different sites: m-xylene-(2)H3 oxidation rates and product selectivity were consistent across the p-xylene concentration range. Overall, this study indicates that the intramolecular isotope effect experimental design provides a unique opportunity to investigate allosteric mechanisms as it provides information about substrate motion when the enzyme is primed to oxidize substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call