Abstract
Although protein-protein interactions (PPIs) have emerged as an attractive therapeutic target space, the identification of chemicals that effectively inhibit PPIs remains challenging. Here, we identified through library screening a chemical probe (compound 1) that can inhibit the tumor-promoting interaction between the oncogenic factor exon 2-depleted splice variant of aminoacyl-transfer RNA synthetase-interacting multifunctional protein 2 (AIMP2-DX2) and heat shock protein 70 (HSP70). We found that compound 1 binds to the N-terminal subdomain of glutathione S-transferase (GST-N) of AIMP2-DX2, causing a direct steric clash with HSP70 and an intramolecular interaction between the N-terminal flexible region and the GST-N of AIMP2-DX2, which induces masking of the HSP70 binding region during molecular dynamics and mutation studies. Compound 1 thus interferes with the AIMP2-DX2 and HSP70 interaction and suppresses the growth of cancer cells that express high levels of AIMP2-DX2 in vitro and in preliminary in vivo experiment. This work provides an example showing that allosteric conformational changes induced by chemicals can be a way to control pathologic PPIs. SIGNIFICANCE STATEMENT: Compound 1 is a promising protein-protein interaction inhibitor between AIMP2-DX2 and HSP70 for cancer therapy by the mechanism with allosteric modulation as well as competitive binding. It seems to induce allosteric conformational change of AIMP2-DX2 proteins and direct binding clash between AIMP2-DX2 and HSP70. The compound reduced the level of AIMP2-DX2 in ubiquitin-dependent manner via suppression of binding between AIMP2-DX2 and HSP70 and suppressed the growth of cancer cells highly expressing AIMP2-DX2 in vitro and in preliminary in vivo experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacology and Experimental Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.