Abstract

The binding of fibrinogen to platelets occurs according to the law of mass action. The platelet receptor binds reversibly a single fibrinogen molecule and undergoes a conformational transition between two allosteric states, T and R, that differ in their affinity for fibrinogen. The equilibrium between the two forms is shifted by ADP toward the R (high-affinity) state, thus promoting the aggregation process. This model opens the way to consideration of allosteric modulation of the binding of fibrinogen to its platelet receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.