Abstract

Ca2+-activated K+ channels from rat muscle transverse tubule membranes were inserted into planar phospholipid bilayers, and the activation of these channels by Ca2+ was studied. On the cytoplasmic side of the channel, calcium ions (in the range 10-100 mumol l-1) increase the opening probability of the channel in a graded way. This 'activation curve' is sigmoid, with an average Hill coefficient of about 2. Magnesium ions, in the range 1-10 mmol l-1, increase the apparent affinity of the channel for Ca2+ and greatly enhance the sigmoidicity of the Ca2+ activation curve. In the presence of 10 mmol l-1 Mg2+, the Hill coefficient for Ca2+ activation is about 4.5. This effect depends upon Mg2+ concentration but not upon applied voltage. Mg2+ is effective only when added to the cytoplasmic side of the channel. The results argue that this high-conductance, Ca2+-activated K+ channel contains at least six Ca2+-binding sites involved in the activation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call