Abstract
Allosteric disulfide bonds control protein function by mediating conformational change when they undergo reduction or oxidation. The known allosteric disulfides are characterized by a particular bond geometry, the -RHStaple. A number of thrombosis and thrombolysis proteins contain one or more disulfide bonds of this type. Tissue factor (TF) is the first haemostasis protein shown to be controlled by an allosteric disulfide, the Cys186-Cys209 bond in the membrane-proximal fibronectin type III domain. TF exists in three forms on the cell surface; a cryptic form that is inert, a coagulant form that binds factor VIIa to initiate coagulation, or a signaling form that binds VIIa and cleaves protease activated receptor 2 that functions in inflammation, tumor progression and angiogenesis. Reduction and oxidation of the Cys186-Cys209 bond is central to the transition between the three activities of TF. The redox state of the bond appears to be controlled by protein disulphide isomerase and NO. Plasmin(ogen), vitronectin, glycoprotein 1balpha, integrin beta3 and thrombomodulin also contain -RHStaple disulfides and there is circumstantial evidence that the function of these proteins may involve redox change of these disulfide bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.