Abstract

Krokinobacter rhodopsin 2 (KR2) serves as a light-driven sodium ion pump in the presence of sodium ion and works as a proton pump in the presence of larger monovalent cations such as potassium ion, rubidium ion, and cesium ion. Recent crystallographic studies revealed that KR2 forms a pentamer and possesses an ion binding site at the subunit interface. It is assumed that sodium ion bound at this binding site is not transported but contributes to the thermal stability. Because KR2 can convert its function in response to coexisting cation species, this ion binding site is likely to be involved in ion transport selectively. However, how sodium ion binding affects the structure of the retinal chromophore, which plays a crucial role in ion transport, remains poorly understood. Here, we observed the structure of the retinal chromophore under a wide range of cation concentrations using visible absorption and resonance Raman spectroscopy. We discovered that the hydrogen bond formed between the Schiff base of the retinal chromophore and its counterion, Asp116, is weakened upon binding of sodium ion. This allosteric communication between the Schiff base and the ion binding site at the subunit interface likely increases the apparent efficiency of sodium ion transport. In addition, this study demonstrates the significance of sodium ion binding: even though sodium ion is not transported, binding regulates the structure around the Schiff base and stabilizes the oligomeric structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.