Abstract

Although donor-specific transfusion (DST) plus CD154 blockade represents a robust protocol for inducing transplantation tolerance, the underlying mechanisms are incompletely understood. In a murine T-cell adoptive transfer model, we have visualized alloantigen-specific, TCR-transgenic for H2-A(b) /H2-K(d) 54-68 epitope (TCR75) CD4(+) T cells with indirect allospecificity during the course of tolerance induction. Three main observations were made. First, although the majority of TCR75 CD4(+) T cells were deleted following DST plus CD154 blockade, the surviving TCR75 CD4(+) T cells were capable of making IL-2, upregulating CD44, and undergoing cell division, suggesting that they were functionally active. Indeed, residual TCR75 CD4(+) T cells reisolated from the primary recipients given DST plus CD154 blockade were fully capable of rejecting allografts upon secondary transfer. Second, in tolerant mice, TCR75 CD4(+) T cells were not induced to express Foxp3 in the graft-draining lymph node. TCR75 CD4(+) T cells were also absent in accepted graft tissues in which endogenous Treg cells were enriched. Finally, DST plus CD154 blockade resulted in an abortive expansion of TCR75 CD4(+) T cells, a process that required the presence of endogenous Treg cells. Collectively, surviving TCR75 CD4(+) T cells are immunocompetent but kept in check by an endogenous immunosuppressive network induced by DST plus CD154 blockade.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.