Abstract

We demonstrate that the magneto-optic-Kerr effect with normal light incidence can be used to obtain quantitative optical measurements of both components of spin-orbit-induced torque (both the antidamping and effective-field components) in heavy-metal/ferromagnet bilayers. This is achieved by analyzing the quadratic Kerr effect as well as the polar Kerr effect. The two effects can be distinguished by properly selecting the polarization of the incident light. We use this all-optical technique to determine the spin-orbit torques generated by a series of Pt/Permalloy samples, finding values in excellent agreement with spin-torque ferromagnetic resonance measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.