Abstract
Compared with conventional piezoelectric transductions, an all-optical high-frequency ultrasound (HFUS) transducer is a promising modality for high-resolution ultrasound imaging. We demonstrate an all-optical HFUS transducer by integrating a carbon nanotube–polydimethylsiloxane composite film with an etalon thin-film structure incorporating SiO2/TiO2 distributed Bragg reflectors and an SU-8 resonator. The optical and acoustic characteristics are investigated for two different configurations (forward and backward operation modes). The maximum amplitude of the pulse echo in backward mode is approximately twofold higher than that of the forward mode. This difference is contributed by the increased reflectance and the absorptive loss of the incident pulsed laser in the forward mode. The pulse echo from the transducer exhibits a broad frequency bandwidth of 27 MHz. Furthermore, the scalability of the 2-D all-optical transducer array is also evaluated by characterizing the optical properties of the etalon across an area of $0.1 \times 0.2 \mbox{mm}^2$ . Our experimental results show that the proposed transducer is a promising candidate for high-resolution ultrasound imaging systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.