Abstract
3-hydroxyflavone (3-HF) is an organic molecule with an excited-stated intramolecular proton transfer (ESIPT) effect. All-optical switchings and beam deflections of 3-HF in three kinds of solvents (cyclohexane, ethanol and dimethyl sulfoxide) have been investigated by using the third-harmonic generation (355nm) of a mode-locked Nd:YAG laser as a pump beam and a continuous-wave (cw) He-Ne laser (632.8 nm) as a probe beam. The nonlinear refractive indices of 3-HF in the three different solvents are determined by using the Z-scan technique under an ultraviolet (UV) pump beam at a wavelength of 355 nm. It has been found that the optical switching and beam deflection effects result from the change in refractive index of 3-HF under the irradiation of the pump beam. On the basis of the analyses of absorption spectra and fluorescence spectra, we conclude that the change in refractive index of 3-HF is due to not the thermal effect but the ESIPT effect of 3-HF under the pump beam. As the ESIPT is exceedingly fast, 3-HF might be an excellent candidate for high-speed optical switching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.