Abstract

Nonlinear optical processes in liquid crystals (LC) can be used for construction of all-optical spatial light modulators (SLM) where the photosensitivity and phase modulating functions are integrated into a single layer of an LC-material. Such spatial light integrated modulators (SLIMs) cost only a fraction of the conventional LC-SLM and can be used with high power laser radiation due to high transparency of LC materials and absence of light absorbing electrodes on the substrates of the LC-cell constituting the SLIM. Recent development of LC materials the photosensitivity of which is comparable to that of semiconductors has led to using SLIM in schemes of optical anti-jamming, sensor protection, and image processing. All-optical processes add remarkable versatility to the operation of SLIM harnessing the wealth inherent to light-matter interaction phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call